Syllabus: Applied Statistics for Health Researchers
Objective
Develop essential competencies in applied statistics for health through the use of the R programming language, providing a theoretical and practical framework that enables participants to analyze data, interpret results, and apply biostatistical techniques in research and professional projects within the health sector.
Course Requirements
- Basic understanding of data management, including knowledge of data structures and types.
- Completion of the Data Management Strategies course.
Course Content
Module 1: Introduction to Biostatistics
- Fundamental concepts of biostatistics
- Installation of the preferred statistical environment
- Importance of accurate and valid data collection in epidemiology
- History and the scientific method
- Epidemiological study designs
- Validity in epidemiological studies
- Sources of bias in data
- History and the scientific method
- Ethics and responsible conduct in data management
Module 2: Descriptive Statistics
Measures of Central Tendency
- Arithmetic mean (average)
- Geometric mean
- Weighted mean
- Median
- Mode
Measures of Dispersion
- Range
- Interquartile range
- Variance
- Standard deviation
Statistical Distributions
- What is a distribution? Theoretical concepts
Module 3: Fundamentals of Probability
- Basic concepts of probability
- Probability theorems
- Conditional probability
- Probability distributions
- Screening tests
Module 4: Statistical Inference
- Introduction to statistical inference
- Hypothesis testing:
-
z test
-
t test
- Proportion tests
- Algorithm for selecting hypothesis tests
-
z test
- Bootstrapping for inferential statistics through resampling
Module 5: Inferential Statistics with infer
in R
- Application of the
infer
package in R for hypothesis testing
- Practical exercises in statistical inference
Module 6: Reproducibility in Research
- Importance of reproducibility in scientific research
- Strategies to ensure transparency and replicability in data analysis
References
Álvarez Cáceres, R. (2007). Estadística aplicada a las ciencias de la salud. Editorial Díaz de Santos, S.A. https://www.editdiazdesantos.com/wwwdat/pdf/9788479788230.pdf
Andrade, H. A. (2019). Bioestadística aplicada en ciencias de la salud. Guía complementaria al curso. Fundación Gustavo Palma Calderón. https://www.researchgate.net/publication/330521436_Bioestadistica_Aplicada_Ciencias_de_la_Salud
Couch, S. P., Bray, A. P., Ismay, C., Chasnovski, E., Baumer, B. S., & Çetinkaya-Rundel, M. (2021). infer: An R package for tidyverse-friendly statistical inference. Journal of Open Source Software, 6(65), 3661.
Dalgaard, P. (2008). Introductory Statistics with R (Second ed.). Springer. 10.1007/978-0-387-79054-1
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023, June 21). An Introduction to Statistical Learning. Trevor Hastie. https://www.statlearning.com/
Kleinbaum, D. G., Kupper, L. L., Nizam, A., & Rosenberg, E. S. (2013). Applied Regression Analysis and Other Multivariable Methods (D. G. Kleinbaum, L. L. Kupper, A. Nizam, & E. S. Rosenberg, Eds.; 5th ed.). Cengage Learning.
Porta, M. S., Greenland, S., Hernán, M., Silva, I. d. S., & Last, J. M. (Eds.). (2014). A Dictionary of Epidemiology (6th ed.). Oxford University Press. 10.1093/acref/9780199976720.001.0001
Díaz-Portillo, J. (2011). Guía práctica del curso de bioestadística aplicada a las ciencias de la salud. Instituto Nacional de Gestión Sanitaria, Servicio de Recursos Documentales y Apoyo Institucional. Madrid, España.
R Core Team, R. (2013). R: A language and environment for statistical computing. https://apps.dtic.mil/sti/citations/AD1039033
Rosner, B. (2016). Fundamentals of Biostatistics (8th ed.). Cengage Learning. https://www.cengage.com/c/fundamentals-of-biostatistics-8e-rosner/9781305268920/